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Abstract 

We investigate conditions under which various topoi satisfy equations, known as the Lee 
identities, that are similar to and weaker than De Morgan’s law. @ 1997 Elsevier Science B.V. 
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1. Introduction 

This article is concerned with characterizing topoi whose truth value objects (as 

Heyting algebras) have special algebraic properties; we explain this more precisely 

later. 

The algebraic structures that we consider are pseudocomplemented distributive lat- 

tices with 0 and 1. The equational classes of pseudocomplemented distributive lattices 

with 0 and 1 form an o-chain: B-1 5 Bo 5 B, !g . . . 5 B,, where B-1 contains only 

the trivial algebra with 0 = 1, B,J is the class of Boolean algebras and Br is the class 

of Stone algebras that are algebras satisfying De Morgan’s law; by an algebraic prop- 

erty, we mean a defining equation I,‘, for such a class B,. We note that every Heyting 

algebra is a particular kind of pseudocomplemented distributive lattice with 0 and 1. 
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The specific examples of pseudocomplemented distributive lattices with 0 and 1 that 

we consider are the following: 

(1) Open(X), which is the Heyting algebra of open sets of a topological space X, 

and 

(2) fig, which is the Heyting algebra of truth-values of an arbitrary topos 8. 

It should be noted that the axioms characterizing B,, where n 2 2, are weaker than 

De Morgan’s law. Other non-equational conditions, weaker than De Morgan’s law 

have been studied by Johnstone [9]. Conditions under which the open set lattice of a 

topological space satisfies De Morgan’s law or Z[ were investigated by Gleason [5]. 

Conditions under which the truth-value object of a topos satisfies I[, were investigated 

by Johnstone [9, lo]. 

We now briefly describe the contents of the other sections. In Section 2 we collect 

the information about distributive lattices needed later, while in Section 3 we investi- 

gate the consequences of the validity of the equational axioms in various kinds of topoi. 

We characterize topological spaces whose open-set lattices satisfy Z,l for some given n, 

thus generalizing Gleason’s result on projective topological spaces [5]. We also relate 

the internal validity of the equation Zi for some n, in arbitrary topoi, to properties 

of maximal ideals in rings and distributive lattices in these topoi, generalizing earlier 

results of Johnstone [7]. We list some open questions at the end of Section 3. We end 

the introduction by listing some notational conventions that we have adopted. 

Notational conventions 

(1) Given integers m and n, m..n denotes the set of integers i such that m 5 i I n. 

Thus i E m..n means that i is an integer such that m 5 i 5 n. 

(2) Given a set S, Fin(S), B(S) and #(S) denote, respectively, the set of finite 

subsets of S, the power-set of S and the cardinality of S. 

(3) For all sets A, B such that B is included in A we denote by rA, the identity 

function on A, and by rg =A, the inclusion mapping of B in A. 

(4) Given a function f: D --+ C, a subset D’ of D and a superset C’ of C, we define 

flp:=f Olg’cQ, flC’*- .-t~~-fof, ~,:~(D)+B(C):=SH{~(~)ECISES}, and 

f’:P(C)+B(D):=T~{sEDIf(s)ET}. 

(5) In any category %T, we have the maps Dom and Cod that send a morphism to 

its domain and codomain respectively. Thus Dom’ and Cod’ are defined by (4). 

(6) In any category %‘, given a morphisms f, we define LcompZ : Cod< (Dom( f )) + 

Cod<(Cod(f)) := g ++ f o g. We shall have occasion to use (Lcompf)’ : S(Cod’ 

(CWf ))) -+ ~(Cod<(Dom(f )). 
We note that given a family F E B(Cod’(Cod(f ))) of morphisms with common 

codomain, the codomain of f, (LcompZ)<(F) = {g E Cod’(Dom(f) 1 fog E F). 

(7) Boldface letters are used to denote finite sequences; the ith term of a is ai. Uni- 

versal quantification over a set of variable {Xi I i E 1 ..r} is denoted either by Vxi . . . Vxr 

or by Vxi , . . . , x, . Similar remarks apply to existential quantification. 
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(8) Given a category W, Op(%) denotes the opposite category. Obj(V) and Mor(%?) 

denote, respectively, the collection of objects of % and the collection of morphisms 

of W. 

2. Distributive lattices 

In this section we gather for later use all the results on distributive lattices that we 

shall need. 

Definition 2.1. &I := the class of distributive lattices with 0 and 1 in the language 

with symbol-set (0, l,A,V, 5). (I --+ b := the relative pseudocomplement of a with 

respect to b, which, if it exists, is the largest element c E L such that a A c < b. a* := 
the pseudocomplement of a, which, if it exists, is a -+ 0. 

Definition 2.2. Given 

complemented. 

L E DOI, if for every a EL, a* exists, then L is said to be pseudo- 

Definition 2.3. Given L E DOI, if for all a, b E L, a -+ b exists, then L is called a 

Heyting algebra. For the purposes of this article, we shall consider Heyting algebras 

to be particular kinds of pseudocomplemented distributive lattices. 

Definition 2.4. Pseudocomplemented lattices, regarded as structures for the language 

with symbol-set (0, 1, A, V, 5, *} are called distributive p-algebras. 

Definition 2.5. B, := the class of distributive p-algebras. 

Remark 2.6. B, is the equational class axiomatized by the axioms of DOI together 

with the following axioms [ 191: 

(0) o* = 1. (1) 1*=0. (3) Vx, y(x A (x A y>* =x A y*). 

Remark 2.7. The equational subclasses of B, are exactly B-1 5 Bo s B1 s . . s B,, 
where B-1 contains only the trivial p-algebra, Bo is the class of Boolean algebras and 

B1 is the class of Stone algebras. Bo is axiomatized by the axioms for distributive 

p-algebras and Vx(x v x* = 1). B1 is axiomatized by the axioms for distributive p- 
algebras and Vx(x* Vx** = 1). In general for all Y 2 1, B, is axiomatized by the axiom 

I,, defined as follows, in addition to the axioms for distributive p-algebras [6]: 

I, : = vx()vx,, . . . vxr 
(i,B,.:i’g”xj=o’- (iJ.=ll)) 

1 > 
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I, may be rewritten as an equation Z,!, namely, 

If the Heyting algebra of open sets of a topological space satisfies Z, (v 2 2) then we 

call it an r-Lee space. 

3. The Lee identities in topoi 

The truth-value object of a topos Y, denoted by Q,-, is internally a Heyting algebra 

and hence a distributive p-algebra [g, pp. 137-1381. In this section we study conditions 

under which Q,- E B,, i.e., 02,- satisfies the Lee identity 1, for some n E w. We shall 

derive general results for arbitrary topoi and also work out the details in certain special 

cases of particular interest. These are as follows: 

(1) Y = Y”P(? The special cases in which V is a monoid and in which %’ is a poset 

will follow as corollaries. The cases n = 0 and n = 1 have been studied by Johnstone 

[71. 
(2) 5 = Shv(X), where X is a topological space. 

It should be noted that the results for (2) may be stated directly in terms of the 

lattice of open sets of X, Open(X), as Open(X) is isomorphic to the global sections of 

Qshv(X). Indeed we shall derive some of the results using purely topological methods 

and state them in the context of topological spaces. For instance, the following are 

well-known [4, p. 221: 

(1) The following are equivalent for a T2 space: 

(a) Open(X) satisfies 10. 

(b) Open(X) is a Boolean algebra. 

(c) X is discrete. 

(2) Open(X) satisfies 1, ++X is extremally disconnected. 

Extremally disconnected spaces have been studied in the context of functional anal- 

ysis by several authors [4, p. 221. They were characterized from the category-theoretic 

point of view by Gleason, who proved the following theorems [5]. We shall follow 

Johnstone’s formulation of these theorems and their generalizations [12]. We recall 

following [12] that an object P in a category %? is said to be projective if and only if 

for every diagram of the form 

x 

1 f 
P-Y 

9 
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with f an epimorphism in %? may be completed to one of the form 

X 

h /I f 

p 9 y 

i.e. there exists h : P +X such that fh = g. More generally, one may consider 

E-projectives or projectives with respect to a class E of morphisms for which the 

morphism f in the diagram above is required to belong to a particular class of epi- 

morphisms E (for instance, the regular epimorphisms). 

Theorem 3.1. In the category of compact T2 spaces and continuous maps, the pro- 

jective objects are precisely the extremally disconnected spaces. 

Theorem 3.2. For any compact T, space X, there is a continuous surjection (called 

the Gleason-cover map) e : yX -+X, where yX is compact, T2 and extremally dis- 
connected, which is “minimal” in the sense that every other such surjection factors sur- 
jectively through e. Moreover, this property characterizes yX up to (unique) homeo- 
morphism in the category of spaces over X 

These results have since been extended by several authors, in general, by enlarg- 

ing the category under consideration [ 13, pp. 104-1051. Theorems 3.11 and 3.15 are 

analogues of these results for n 2 2. 
Johnstone has studied the general case for n = 1. He proved the following theo- 

rem [lo]. 

Theorem 3.3. The following conditions on a topos F are equivalent: 

(1) Y + I,, i.e. De Morgan’s law holds in K 
(2) If R is a commutative ring in y, then every maximal ideal of R is prime. 
(3) Same statement as (2) for distributive lattices. 

(4) Same statement as (2) for Boolean algebras. 

Theorem 3.28 is a generalization of this result for n > 2. 

We begin by proving an analogue of Theorem 3.1 for Lee identities in the category 

CHaus of compact T2 spaces and continuous maps. X, the condition Shv(X) b I,, is 

equivalent to Open(X) k 1, [9]. In what follows, Closed(X) denotes the set of closed 

sets of a topological space X and Cl(A) denotes the closure of a set A. Exactly how 

Theorem 3.2 generalizes for n 2 2 is currently being investigated. 

Definition 3.4. A continuous surjection p : E 4 A is said to be minimal: H for every 

F E Closed(E)\(E), p,(F) s A. 

Definition 3.5. For every 0 E Open(E) and for every p : E --+ A,VJO) := {y E A 1 

P’({Y)) c 0). 
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The following lemma lists some basic facts about V~. 

Lemma 3.6. Let the continuous surjection p : E --) A be given. Then 

(1) &(O)=A\o>(E\O), (2) ‘d,(Q))=0 ifp is surjective, and (3) VO1,Oz E Open(E), 

Vo(Oi) n y9b(oz> =Vp’,cQ f- 02). 

Proposition 3.7. Let the spaces A, E and a continuous surjection p : E + A be given. 
Then p is minimal @ for every 0 E Open(E), p, (0) c Cl( &p(O)). 

Proof. (*): [5]. 
(+): Assume that for every O~Opett(E), p,(O) cC1(Vp(0)), and that p is 

not minimal. Hence we may choose E’ E Closed(E)\(E) such that A=p,(E’). Set 

0 := E\E’. By assumption, 0 # 0. Hence p,(O) # 0. But p,(O) c Cl(A\p,(E\O)) = 
Cl(A\p>(E’))=Cl(A\A)=Cl(~)=~, h h . w ic is a contradiction. Hence the result. 0 

Lemma 3.8. X is an n-Lee space * for every famiZy (Oi 1 i E 1 ..(n + 1)) of n + 1 

pairwise disjoint open sets in X, &, .,(,,+,) Cl(Oi) = 0. 

Proof. X is an n-Lee space 

@ for every family as in the preceding, lJiGl,,(n+l) Int(X\Oi)=X 

e for every family as in the preceding, n,~,,,,,+,,X\Int(X\Oi) = 0 

ti for every family as in the preceding, &, ,++i) Cl(Oi) = 0. 

Proposition 3.9. Let a continuous surjection of T2 spaces p : E + A be given. Assume 
that A is an n-Lee space and that p is minimal. Then p is at most n to 1. 

Proof. We assume, towards a contradiction, that we may choose a E A and n + 1 

distinct points xi, x2 , . . . ,x,,+l E E such that for every i E 1 ..(n + I), p(Xi) =a. As E is 

a T2 space, we may choose for all i E 1 ..(n + 1) pairwise disjoint open neighbourhoods 

Oi E Open(E) of the points xi. Then for every i E 1 ..(n + l), E\Oi is closed and (as E 
is compact), compact. Hence for every i E 1 ..(n + l), p, (E\Oi) is compact and hence 

closed. Hence for every i E 1 ..(n + l), Vp(Oi) =A\p,(E\Oi) E Open(A). For distinct 

i,jE l..(n+ l), Vp(O~)~Vp(O~)~Vp(O~flO~)=Vp(~)=~ (by Lemma 3.6). 

Hence (Vfl(Oi)li~ l..(n + 1)) is a collection of n + 1 pairwise disjoint open sets. 

As A is an n-Lee space, it follows from Lemma 3.8 that 

n Cl(Vp(Oi))=B. (1) 
iE1 ..(n+l) 

As p is minimal, it follows from Proposition 3.7 that for every i E 1 ..(n+ l), p, (Oi) c 

Cl(Vp(Oi)). Hence for every i E 1 ..(n+ l), p(Xi)=a E p,(Oi) C Cl(Vp(Oi)) which con- 

tradicts (1). Hence the result. 0 

Lemma 3.10. Let the compact Hausdorfs spaces A, D and the continuous surjection 
p : D -+ A be given. Then there exists E E Closed(D) such that p,(E) = A, but for 
every FE Closed(E)\(E), p,(F) 5 A, i.e., PIE : E + A is minimal [13]. 
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Theorem 3.11. The following are equivalent for every compact T, space A: 
(1) A is an n-Lee space. 
(2) The Gleason-cover map e: yA + A is at most n to 1. (Note that e is minimal.) 
(3) For every compact T2 space E and every continuous surjection p : E -+ A (p is 

minimal * p is at most n to 1). 

(4) For every compact T2 space E and for every continuous surjection p : E + A 
there exists F E Closed(E) such that p(~ : F -+A is at most n to 1 and p,(F)=A. 

(5) Every diagram of the form 

E 

i 

h 

A-B 
k 

in CHaus with h surjective can be completed to a commutative square 

with g at most n to 1. 

Proof. We establish the following chains of implications: 

(l)*(2)*(3)*(1), (3)*(5)*(3)*(4)*(2). 
(1) + (2): This follows from Proposition 3.9 as e is minimal. 

(2) + (3): We prove this by contraposition. Let E, p : E + A be given such that p 
is minimal. We assume that (3) does not hold, i.e. p is not at most n to 1. Hence we 

may choose n + 1 distinct points x1 ,x2,. . . ,x,,+l~E suchthatforeveryiEl..(n+l), 

p(xI)=aEA. 
As yA in projective in CHaus, we have the lifting 

YA --PA 

Hence, as the preceding diagram commutes and as f is surjective, we may choose for 

every i E 1 ..(n+l), a distinct point y; E f ‘({xi}) C ?A, such that for every i E 1 ..(n+l), 

e(yi) = pf(yi) = p(xi) = a. Hence the Gleason-cover map e is not at most n to 1. Hence 

(2) does not hold. Hence the result. 

(3)+ (4): Let E and p: E -+ A be given. Using Lemma 3.10 we may choose FE 
Closed(E) such that p\~ is minimal. Hence by (3), p[~ is at most n to 1. 



150 A. Bagchil Journal of Pure and Applied Algebra 120 (1997) 143-159 

(3) +- (1): We prove this by contraposition. We assume that (1) does not hold, 

i.e. A is not an n-Lee space. Hence we may choose a family of pairwise disjoint open 

sets (Oi 1 iE l..(n+ 1)) and UGA such that UE &,..,,+,,Cl(Oi). Set X:= UiEl.,(n+t) 

(A\ UjGl..(n+l)\{i) oil ’ Ii)* n :X--f A denotes the projection. We may, by Lemma 

3.10, choose E E Closed(X) such that p := 7~1,s is minimal. 

Claim. p is not at most n to 1. 

Proof. Let i E 1 ..(n + 1) be given. As p is surjective, Oi Cp,(E). As Oi is disjoint 

from n> (&El ..(n+l)\{i}(A\ U&l ..(n+l)\{j} 
Ok) x {j}), it follows that p’(Oi)C((A\ 

Ujel..(n+l)\(i) Oj) x {i)). Hence Oi x {i) C ((A\ U, ,El ..(p+-l)\(i) Oj) ’ Iill fl E. As (CA\ 
UjEl ,,(n+l),Iil Oi) x {i}) n E is closed for every i, it follows that for every i E 1 ..(n+ l), 

Cl(O~x{i})=Cl(O~)X{i} c((A\U. JEl.,(n+l)\{i} oi)x{iI)nE* Hencey as aE fliEl..(n+l) 

Cl(Oi), p’({u}) = {(a,i) 1 i E 1 ..(n + 1)). Hence the claim. 0 

Thus p : E 4 A is minimal and yet fails to be at most n to 1. Hence (3) does not 

hold. 

(4) + (2): Let A be given. We may, using (4), choose F E Closed(yA) such that el,~ 

is surjective and at most n to 1. Using Lemma 3.10, we may choose G E Closed(F) 

such that elo is minimal. But using the minimality of Gleason covers we have a 

factorization with elo = ef, as shown in the diagram below: 

As e(o is at most n to 1, so is e. 

(3) + (5): Let A, E, B, k, h be given as in the hypothesis of (5). Consider the pullback 

A xg E, where rtr : A xg E + A is surjective as h is. By Lemma 3.10, we may choose 

X E Closed(A xg E) such that g := nr 1~ is minimal. As A is an n-Lee space, it follows 

from (3) that g is at most n to 1. Clearly, we have the commutative diagram shown 

below: 

f := x,h 
X-E 

9 I Ax,E 

J 

h 
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(5) e (3): We consider the diagram 

with p a minimal surjection. Then, using (5), we may complete the square to obtain 

f 
X-E 

B I ! P 

where g :X -+ A is at most n to 1 and surjective. 

Claim. f is surjective. 

Proof. We assume, towards a contradiction, that f is not surjective. Hence f,(X) 5 E. 

But f,(X) is compact and hence closed. 

Also ~>(f>(~))=(pof)>(X)=(r~~g)>(~)=~>(~)=A. 
Hence p is not minimal, which is a contradiction. Hence, the claim. 0 

But g = rA o g = p o J Hence, as f is surjective and g is at most n to 1, so is p. We 

have thus established the exhibited chains of implications. 0 

Remark 3.12. Part (5) in Theorem 3.11 may be regarded as a generalization of the 

notion of projectivity, which is recovered as a special case of (5), if g is 1 to 1. 

Gleason’s Theorem can be extended to the category Top of topological spaces and 

continuous maps; the theorem is that the projectives with respect to proper surjections 

in Top are precisely the extremally disconnected spaces. Theorem 3.11 has a similar 

extension to the category Top of all topological spaces and continuous maps; this 

is Theorem 3.15 below. Indeed, the notion of propriety as defined in the following 

was motivated by Gleason’s proof of Theorem 3.1 [ 13, pp. 104-1051. In essence, one 

analyses the proof to isolate the relevant properties of the maps. We have omitted some 

details in the proof of the following theorem as it repeats some of the constructions in 

the preceding one. 

Definition 3.13. f :X + Y is said to be proper: H f satisfies the following conditions: 

(1) for every y E Y, f '({y}) is compact. 

(2) f is a closed map, i.e. the function Vf : 9(X) + P(Y) := 0 H (Y\f, (X\O)) 

preserves open sets. 

(3) Distinct points in the same fibre of f have disjoint open neighbourhoods in X, 

or equivalently, the diagonal map A :X -+X x y X is a closed embedding. 
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Remark 3.14. We note the following relevant properties of proper maps. The proofs 

may be found in [13, pp. 102-1051. 

(1) Lemma 3.10 remains valid if we delete the words “compact” and “Hausdorll”’ 

and replace the word “continuous” with “proper”. 

(2) The restriction of a proper map to a closed subspace of its domain is proper. 

(3) In the category of topological spaces and continuous maps, pullbacks of proper 

maps are proper. 

Theorem 3.15, The following are equivalent for every topological space A: 
(1) A is an n-Lee space. 

(2) Every proper minimal surjection p : E + A is at most n to 1. 

(3) Every diagram of the form 

E 

! h 

A-B 
k 

in Top, with h proper, can be completed to a commutative square 

f 
X-E 

h 

4. 

A----S 
k 

where g is at most n to 1. 

Proof. (1) + (2): We prove this by contraposition. Let a proper minimal map p : E + A 

be given for which (2) does not hold. Hence, we may choose a E A such that #(~‘({a})) 
>n + 1. Let xl,..., x,+1 be elements of p’<(a)). We may, using clause (3) in 

Definition 3.13, choose a family of disjoint open sets (Of 1 i E 1 ..(n + 1)) such that for 

every i E 1 ..(n + l), xi E Oi. Set for every i E 1 ..(n + l), Hi :=$(Oi). AS p is proper, 

it follows from clause (2) of Definition 3.13 that for every i E 1 ..(n+l), Hi is open. We 

note that for every pair of distinct elements i, j E 1.. (n+ 1 ), Hi n Hj = I$( Oi) n V’(Oj) = VP 

(O~noj)=VP(0)=O (by Lemma 3.6). 
But, as p is minimal, it follows from Proposition 3.7 that for every i E 1 ..(n + l), 

p>(Oi) C Cl(Hi). Hence for every i E 1 ..(n -t l), p(Xi) = a E Cl(Hi). Hence &, ++i) 

Cl(Hi) # 0. Hence, A is not an n-Lee space, i.e. (1) does not hold. 

(2) + (1): We prove this by contraposition. We assume that A is not an n-Lee space. 

Hence, we may choose a E A and a family of pairwise disjoint open sets (Oi 1 i E 1 ..(n+ 
1)) in A such that a E n,,, ,++i) Cl(Oi). 

Set X := Ui,_l,,C,+,)((A\ UjCr..Cn+,),(iI q) x {i}). 7~ :X+A denotes the projection. 

We may, by an appropriate modification of Lemma 3.10, choose E E Closed(X) such 

that p := ~1~ is minimal. 
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Claim. p is proper and not at most n to 1 

Proof. Let i E 1.. (n + 1) be given. The same argument as in the proof of (3) + ( 1) in 

Theorem 3.11 yields that p’({a})={(a,i) 1 iE l..(n+ l)}, i.e. p is not at most n to 1. 

It remains to show that p is proper. We first show that IX is proper. Clauses ( 1) and (3) 

in Definition 3.13 are clearly satisfied. We therefore verify clause (2). Let CEClosed(X) 

be given. Hence we may choose n + 1 closed sets Cl,. . , Cn+i E Closed(A) such that 

C= Ui%(n+l) C, x {i}. Hence rc, (C) = &, ,++,) Ci, which is closed in A. Hence, 

as C was arbitrary, rc is a closed map. Hence, as E is closed, by Remark 3.14, 

p = XIE is proper. Hence the claim. 0 

Thus, p is a minimal proper map that fails to be at most n to 1. Hence the result. 

(2) + (3), (3) + (2): In view of Remark 3.14, these proofs are essentially the same 

as the proofs (3) + (5) and (5) + (3) in Theorem 3.11 and are therefore omitted. 

Thus, we have established the exhibited chain of implications. 0 

We next consider the validity of the Lee identities in various presheaf topoi. 

We consider the general case Y oP(v) first. The background material on presheaf topoi 

and sieves, as also the interpretation of first-order predicate calculus in topoi, can be 

found in [17]. Similar considerations in the context of conditions stronger than De 

Morgan’s law appear in [9]. 

Definition 3.16. Given C E Obj(%‘) and a family of morphisms with the same codomain 

C, (fi~Cod’(C)li~Z). 

Ssp(( fi E Cod<(C) 1 i E I)) := the sieve spanned by (J;: E Cod<(C) I i E I). 

Lemma 3.17. For every CE Obj(%) and all sieves R,S on C, 

z~E(R+S) H (RcS). 

Proof. ( zc E (R c S)) @ ((R + S) = Cod<(C)) @(R = R n Cod’(C) = R n(R -S)cS). 

0 

Proposition 3.18. Y”P(‘) satisjies I,-, H given n morphisms (f; I i E 1 ..n) with the 

same codomain C, there exist j, k E 1 ..n such that the diagram 
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in %? can be completed to a commutative square 

h ! I h 

Proof. (+): Let C E Obj(%?) and (f;: E Cod’(C) 1 i E 1 ..n) be given. If there exist j,k E 

1.. n such that Ssp( fj) n Ssp( fk) # 8, then clearly 

1 h 

0-o 

fk 

may be completed to 

9 
0-o 

h 

I I 

f, 

for some g and h. 

Thus, we assume that for every pair of distinct elements i, j E 1 ..n, Ssp( f;:) n Ssp( fj) 

= 8. As Y@‘(v) satisfies In-i, it follows that we may choose i E 1 ..n such that zc E 

(Ss~(f;:)+@). H ence by Lemma 3.17, Ssp( fi) c 8, which is a contradiction. Hence, 

the initial assumption is untenable. Hence there exist distinct j, k E 1 ..n such that 

Ssp(fj)nSsp(fk)% and we are in the previous case. As C, fi were arbitrary, the 

result follows. 

(+): Let C E Obj(%?) and (Ri E Sieve(C) 1 i E 1 ..n) be given. We assume 

(1) that for every pair of distinct elements i, j E 1 ..n, Ri n Ri = 0, and 

(2) that the right-hand side of Proposition 3.18 holds. 

Assume that 

for every i E 1 ..n, Ri # 0. (2) 

Then we may choose for every i E 1 ..n, J;: E Rj. It follows from (1) that for every pair 

of distinct elements i, j E 1 ..n, Ssp( Ji) n Ssp( fj) = 0. But this contradicts (2) i.e. that 

the antecedent holds. Hence (3) is untenable. Hence we may choose i E 1 ..n such that 

Ri = 8. Hence Rr = Cod<(C). Hence, U,,, ..n RT = Cod<(C). As C, Ri were arbitrary, 

it follows that YpopfQ) satisfies I,- 1. q 
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Remark 3.19. The preceding essentially means that there do not exist n non-empty 

pairwise disjoint sieves on an object. 

Corollary 3.20. Let M be a monoid, The topos YM of (right) M-sets satisJies I,_, H 

the following equivalent conditions hold: 

(1) There do not exist n non-empty pairwise disjoint right ideals. 

(2) For every family (mi EM 1 i E 1 ..n), there exist j, k E 1 ..n and pj, pk EM such 

that mjpj = mkpk. (This is called the right Ore condition if n = 2 [6].) 

Proof. Direct translation of Proposition 3.18. 0 

Corollary 3.21. Let P be a poset. The topos Y’P(‘) satisfies I,,-, #for every p E P 

and PI,..., p,, 5 p there exist i, j E 1 ..n and r E P such that r 5 pl, and Y < pj. 

Proof. Direct translation of Proposition 3.18. 0 

We shall next discuss conditions equivalent to the Lee identities in arbitrary topoi. 

One has to weaken the notion of primeness to get analogues of Theorem 3.3. We need 

the following definitions and lemmas before we can state the main results. 

Definition 3.22. Let the distributive lattice L be given. We first make the following 

definitions: 

Idl(L):={ZcLI1 is an ideal}, Filt(L):={FcLIF is a filter}, MaxIdl(L):= 

{IEIdl(L) 11 is a maximal ideal}, MaxFilt(L) := {F E Filt(L) 1 F is a maximal filter}, for 

every 5’ c L, Isp(S) := the ideal spanned by S, and for every S c L, Fsp(S) := the filter 

spanned by S. 

Lemma 3.23. Let the distributive lattice L, I E Idl(L), a E L, F E Filt(L), and b E L be 

given. Then 

(1) Isp(IU{a})={(aAk)ViIiEI, kEL}. 

(2) Fsp(FU{b})={(bVk)Af( f EF, kEL}. 

Proof. Straightforward verification. 0 

Definition 3.24. Let n E o be given. 

(1) An ideal I in a ring R is said to be (n- 1)-prime : @Val . . . Va, E R, ((Vi, j E 1 ..n, 

i#j*aiajEI)=S3iEl..n, aiEZ). 

The preceding means that given n elements of R whose pairwise products are all in I, 

one of these elements must be in I. Similar remarks apply to the following definitions. 

(2) An ideal I in a distributive lattice L is said to be (n- 1 )-prime : w Yal . . . ‘v’a, E L, 

((Vi,jEl..n, i#j+aiAajEZ)=S3iEl..n, UiEI). 

(3) A filter F in a distributive lattice L is said to be (n - 1)-prime : ti Val . . . Va, E L, 

((Vi,jEl..n, i#j~aiVaj~F)~3i~l..n, aiEF). 

Remark 3.25. The preceding definitions are weakenings of the various notions of 

primeness that we shall need. We note that if n = 2, we recover the usual notion 
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of primeness. A related definition for n-primeness in the case of ideals in rings was 

proposed independently by Richard Squire in a similar context [18]. Blass has shown 

that under the assumption of the axiom of choice, an n-prime ideal in a ring is the 

intersection of n (1-)prime ideals [3]. It is unknown to the author if this may be 

established without assuming the axiom of choice. 

Definition 3.26. In this definition A is a ring or a distributive lattice in a topos K 

An ideal I in A is said to be proper : @ (1 E Z) -+ J_ internally. An ideal I in A is said to 

be maximal : M VJ E &(((J is an ideal) A (I c J) A ~(1 E J)) + (I = J)) internally. 

Fact 3.27. In what follows, we shall have occasion to use the following facts, which 
are proved in [lo]. Let the topos d be given. Then {I} and {T} are, respectively, 
the only proper ideal and the only proper jilter in (a,) 7 _ . Both are maximal. 

Theorem 3.28. The following conditions on a topos B are equivalent: 

(1) 8 /=4-l. 
(2) If A is a commutative ring in &‘, then every proper maximal ideal of A is 

internally (n - 1 )-prime. 
(3) If L is a distributive lattice in 6, then every proper maximal ideal of L is 

internally (n - 1 )-prime. 
(4) If L is a Boolean algebra in 8, then every proper maximal ideal of L is 

internally (n - 1 )-prime. 
(5) If L is a distributive lattice in 8, then every proper maximal jilter of L is 

internally (n - 1 )-prime. 
(6) If L is a Boolean algebra in 6, then every proper maximal Jilter of L is 

in ternally (n - 1 )-prime, 

Proof. We establish the following chains of implications, (1) + (2) + (4), (1) + (3) + 

(4), (4)+(l), (3)=+(5), (5)+(6), (6)+(l). The proofs of (l)=%(2) and (l)+(3) 

are essentially the same except for notational differences. The proof of (1) + (5) is 

dual to the proof of (1) + (3) and is omitted. 

(1) + (2): Let the commutative ring A in 8, I E MaxIdl(A) and al,. . . , a,, E A be 

given such that Vi, j E 1 ..n, i # j + aiaj ~1. Set Vi E 1 ..n, 4 :=Isp(l U {ai}). Then 

Vi E 1 ..n, we have ‘db, b E Ji H 3x, 3y(y E I A b = six + y). Let i, j E n be given such 

that i # j. Then internally we have the following. 

c-) 3Xi,3Yi,3Xji, 3Yj(Yi EZ A Yj El A Yj EI A 1 =UiXi + Yi = ajXj + Yj) 

+ 1 =(&Xi + _Yi)(UjXj + Yj) 

+ I= UiUjXiXj + YiUjXj + YjUiXi + YiYj 

-+ 1EI (as UiCZj El) 

-+ I (as I is proper). 
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As i,j were arbitrary, we conclude that Vi,jEl..n, ifj + (1~4) A (1 EJ~)=L 

Hence, as &’ + In-l, it follows that Vi E, ,,n ~(1 E Ji) = T. Hence, as we are arguing 

in the internal logic, we may choose i E 1 ..n such that ~(1 E Ji). But, as Z is maximal 

and I C Ji, it follows that I = Ji. Hence ai E 1. AS ~1 , . . . , a, were arbitrary, I is (n - l)- 

prime. 

(l)+ (3): Let the distributive lattice L in &, 1 E MaxIdl(L) and al,. . .,a, EL be 

given such that Vi, j E 1 ..n, i # j + ui Aaj E I. Set Vi E 1 ..Iz, Ji := Isp(1 U {ui}). Then it 

follows from Lemma 3.23 that Vi E 1 ..n and Vb, b E Ji ~3x3y(y E I A b = (ai Ax) V y). 

Let i, j E i ..n be given such that i #j. Then internally we have the following: 

(1 l Ji)r\(l EJ,) 

H 3Xi3Yi3Xj3Yj(YiEZAYjEZA 1 =(UiAXi)Vyi=(UjAXj)V~j) 

+ l=((UiAXi)Vyi)A(UjAXj)Vyj) 

+ ~=(U~AU~AX~AX~)V(~~AU~A.ZC~)V(~~AU~AX~)V(IJ~A~~) 

+ 1 EZ (as UiAUjEZ) 

--+ I (as I is proper). 

AS i,j were arbitrary, we conclude that V’i,jE l..n, i#j+(lEJi)A(lEJj)=_L. 

Hence, as 8’ + In-l, it follows that Vi,, .,n ~(1 E Ji) = T. Hence, as we are arguing in 

the internal logic, we may choose i E 1 ..n such that ~(1 E Ji). But, as I is maximal 

and I C Ji, it follows that I = Ji, and hence ai E I. AS al,. . . , a, were arbitrary, I is 

(n - 1 )-prime. 

(2) + (4) (3) + (4) (5) + (6): (2) + (4) and (3) + (4) follow from the facts that a 

Boolean algebra is both a commutative ring and a distributive lattice and the no- 

tions of ideal, primeness and similarly n-primeness agree in the two contexts [7, 

pp. 452-457, 12, pp. 10-121. The identification of a Boolean algebra with a dis- 

tributive lattice may be made in two ways. One of them sends ideals in the algebra to 

filters in the lattice. Essentially the same arguments, as in the references cited, yield 

that n-prime ideals correspond to n-prime filters. (5) + (6) then follows in a manner 

analogous to (3) * (4). 

(4) + ( 1): We consider the Boolean algebra a,,. The unique proper maximal ideal 

in Q,, is the singleton {I}. By assumption, {I} is (n - I)-prime. Hence VP,, . . . , pn 

of type Q2,, such that (Vi,jEl..n, i#j+PiApj=I), 3iEl..n such that piE{i} 

i.e. pi = 1. Hence, 

v (-pi)=T. (3) 
iEl..n 

Let 41,. . .,q,, of type 52 be given such that Vi,j E 1 ..n, if jd qi /\qj = 1. Then 

77ql,...,7-qn are of type 52,,. As 52 is a Heyting algebra, Vi, j E 1 ..n, i #j 

+ l,qiA ,,qj=,,(qiAqj)=11(1)=I. 

Hence by (l), Vi,, ..n ~(~~qi)=T. Hence, uE,,.n T(qi)=T. As q{,... qn were ar- 

bitrary, we conclude that d k In-i, 
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(3) + (5): This follows immediately from the following observation. If L is a dis- 

tributive lattice, so is LOP, the opposite of L, and so MaxFilt(L) = MaxIdl(L’P) as 

subobjects of &. Hence, 

F E MaxFilt(L) -+ F E MaxIdl(LoP) 

4 F is an (n - 1 )-prime ideal in Lop 

-+ F is an (n - 1 )-prime filter in L. 

(6) + (1): We note that (6) is dual to (4). We consider the Boolean algebra Q,, 

in 8. This has a unique proper filter {T} which is maximal. By assumption, {T} is 

(n - 1)-prime. As 1: (52,,)oP --f CL, is an isomorphism of Boolean algebras, {I} is 

the unique proper maximal ideal of 52,, and is (n - 1 )-prime. Then it follows from 

the proof of (4)+(l) that & b Z+i. 0 

Further development. We list below certain questions closely related to the above that 

will be considered in a later article. The following results are known. 

(1) Let Cw be a topos with a natural number object. Then E + Ii @the object of 

Dedekind-Tiemey real numbers in 6 is (internally) conditionally order-complete [9]. 

(1) is an internal version of the following result. 

(2) Let X be a topological space. Then Open(X) k Ii + the set Cont(X, [w) of 

continuous real-valued functions on X is a conditionally order-complete lattice [4, 

p. 521. 

It remains to find a “nice” lattice-theoretic condition on Cont(X, [w) that corresponds 

to (2) when Zi is replaced with I,,. This should immediately generalize to an internal 

analogue corresponding to (1). 

The special case in which the topological space X is the spectrum Spec(R) of a 

commutative ring R has also been studied [15, 161. The following results are known: 

(3) Open(Spec(R)) b Zi @R/N is a Baer ring, where N is the nilradical of R. 

(4) Let X be a topological space. Then 

(i) Open(X) I= Z 1 + the set of continuous real-valued functions on X is a Baer 

ring, and 

(ii) the set of continuous real-valued functions on X is a Baer ring and X is com- 

pletely regular + Open(X) + Ii. 

Here, the question is to find ring-theoretic conditions on Cont(X, [w) that generalize 

(3) and (4) if Ii is replaced with Z,, (with n > 2). This will be investigated in a 

forthcoming paper. 

Ring-theoretic conditions on Cont(X, Iw) equivalent to the validity of Z,, in 

Open(Spec(R)) for n 2 2 should also yield internal analogues. 

In [ll, 121 Johnstone has generalized both of Gleason’s results, i.e. Theorems 3.1 

and 3.2 to the category of topoi and special classes geometric morphisms. To generalize 

Theorem 3.2 he constructs a De Morgan topos that “best” approximates a topos. Exis- 

tence of analogous covers for the other Lee identities are being currently investigated. 

Johnstone’s generalization of Theorem 3.1 is the following: 
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(5) Let V be an Y-topos (and assume Zorn’s lemma holds in 9). Then d is projec- 

tive with respect to CSLC localic morphisms (in particular, with respect to surjective 

proper morphisms) in Y-O!?7 iff it satisfies De Morgan’s law i.e. 11. 

Work is underway to find analogues for n > 2. 

Finally Johnstone has also studied the validity of the identity Vx, ~((x --) y) V (y +x) 

= 1) called strong De Morgan’s law in arbitrary topoi [9]. The equational subclasses of 

algebras satisfying strong De Morgan’s law also form a chain [2]. The validity of these 

equations in topoi lead to similar questions that are also being currently investigated. 
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